Equivariant cohomology distinguishes toric manifolds
نویسندگان
چکیده
منابع مشابه
The quantum equivariant cohomology of toric manifolds through mirror symmetry
Using mirror symmetry as described by Hori and Vafa, we compute the quantum equivariant cohomology ring of toric manifolds. This ring arises naturally in topological gauged sigma-models and is related to the Hamiltonian Gromov-Witten invariants of the target manifold. e-mail address: [email protected] address: Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
متن کاملDescribing Toric Varieties and Their Equivariant Cohomology
Topologically, compact toric varieties can be constructed as identification spaces: they are quotients of the product of a compact torus and the order complex of the fan. We give a detailed proof of this fact, extend it to the non-compact case and draw several, mostly cohomological conclusions. In particular, we show that the equivariant integral cohomology of a toric variety can be described i...
متن کاملEquivariant Chow cohomology of toric varieties
We show that the equivariant Chow cohomology ring of a toric variety is naturally isomorphic to the ring of integral piecewise polynomial functions on the associated fan. This gives a large class of singular spaces for which localization holds in equivariant Chow cohomology with integer coefficients. We also compute the equivariant Chow cohomology of toric prevarieties and general complex hyper...
متن کاملEquivariant Chow Cohomology of Nonsimplicial Toric Varieties
Abstract. For a toric variety XΣ determined by a polyhedral fan Σ ⊆ N , Payne shows that the equivariant Chow cohomology is the Sym(N)–algebra C(Σ) of integral piecewise polynomial functions on Σ. We use the CartanEilenberg spectral sequence to analyze the associated reflexive sheaf C(Σ) on PQ(N), showing that the Chern classes depend on subtle geometry of Σ and giving criteria for the splittin...
متن کاملExtended Manifolds and Extended Equivariant Cohomology
We define the category of manifolds with extended tangent bundles, we study their symmetries and we consider the analogue of equivariant cohomology for actions of Lie groups in this category. We show that when the action preserves the splitting of the extended tangent bundle, our definition of extended equivariant cohomology agrees with the twisted equivariant de Rham model of Cartan, and for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2008
ISSN: 0001-8708
DOI: 10.1016/j.aim.2008.04.002